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Abstract

Ferroelectrics are increasingly important as materials in semiconductor technology, e.g. for building non-volatile
memory chips. For optimisation of the properties of such devices, there is an urgent need for methods, which analyse
the ferroelectric properties at nanometer scale. Furthermore, the basic understanding of the interaction of ferroelectrics
with electrons in the transmission electron microscopy is still incomplete. It is shown that electron holography offers a
promising way to understand and investigate ferroelectrics in the electron microscope.
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1. Introduction

Ferroelectric structures are expected to be easily
accessible both in magnitude and orientation of
the ferroelectric polarisation by transmission
electron microscopy (TEM). This is because they
represent electric fields, which give rise to the
well-understood Coulomb interaction with the
beam electrons. Starting with the work of Pfisterer
et al. [1] and Tanaka et al. [2], ferroelectrics have
been investigated by TEM for 40 years. The first
findings successfully showed the ability to display
ferroelectric domain boundaries. A basic explana-
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tion in terms of particle optics was given by Fuchs
and Liesk [3]: for an accelerating voltage U, and
an object of thickness ¢ with a polarisation
component P perpendicular to the electron beam,
they estimated a deflection y of the electron
trajectories by the angle

1 Pt
2(Jacc (Sr - 1)30

with the dielectric constants ¢, and ¢,. Analogous
to the explanations of contrast arising at magnetic
domain walls, they could understand the contrast
arising at ferroelectric domain walls. Including

relativistic correction, the angle reads
_m/my Pt

S 2UE, (e — Do

with m/my = 1 + eUsee/Eo, U, = Usee(l + €Upee/
(2Ey)) the relativistically corrected accelerating

b
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voltage; e, m, my and Ey = moc’> mean charge,
mass, rest mass and rest energy of the electron,
respectively.

In fact, the deflection angle is often very small.
Assuming a homogenously polarised monolayer of
BaTiO; (P =0.26 C/m?, &~1700) arranged
perpendicularly to the electron beam, an angle of
only ypp 2 x 1073 rad results.

A more thorough analysis, e.g. of the image
contrasts and of the diffraction phenomena
occurring with ferroelectrics, needs wave optics.
Tanaka [4], performing diffraction experiments at
BaTiO3, found splitting of certain reflections and
violation of Friedel’s rule. Furthermore, much to
their surprise, they also found a strong contrast
between inversion domains in dark field images;
this was indeed surprising since there seemed to be
virtually no difference in the crystallographic
structures between the inverted domains. These
experimental findings are not yet consistently
understood. Also the theoretical investigations in
terms of dynamical theory of electron diffraction
by Gevers et al. [5] do not yet deliver satisfactory
results. The interpretation of an electron micro-
graph of ferroelectrics in terms of polarisation has
been very difficult so far.

There is some hope that ferroelectric polarisa-
tion gives rise to some specific phase shift and
that, consequently, electron holography can con-
tribute to the solution of this problem. Therefore,
Zhang et al. [6] obtained first ferroelectric holo-
grams and found phase differences presumably
originating from ferroelectric domains. Unfortu-
nately, the theoretical description [7] used for
interpretation was wrong. It assumed that the
phase shift arises solely from the polarisation
component along the electron beam. Instead, from
general arguments, Spence et al. [8] showed that
only the polarisation components perpendicular to
the beam (“‘in-plane” components) can contribute
to the phase.

2. Ferroelectric facts
Ferroelectric properties arise below a Curie

temperature due to a phase transition of the
crystal structure slightly distorting the unit cells.

For example, in case of BaTiOj3, below the Curie
temperature of 120°C, the previously cubic lattice
is tetragonally distorted at a ratio ¢/a = 1.04 of
the lattice constants ¢ and « [9], since the anions
and the cations are oppositely displaced along the
c-direction (Fig. 1). Consequently, e.g. at an a—c
domain boundary, lattice planes rotate by a small
angle corresponding to the c¢/a-ratio (Fig.2).
Using high-resolution TEM, Stemmer et al
exploited this effect for a detailed analysis of
ferroelectric domains in PZT-crystals [10].

By the tetragonal distortion, the centre of charge
is split into an electric dipole with dipole moment
p= qa7 also oriented along c-direction, where ¢
means the modulus of the charges, and d their
separation vector. Polarisation is defined as mean

Fig. 1. Scheme of tetragonal distortion of BaTiO;. Below Curie
temperature, the metal atoms Ba and Ti shift to the right, the
oxygen atoms to the left. Therefore, the unit cell expands along
¢, and an electric dipole arises. The dipole moment p is pointing
from “—"" to “+”.
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Fig. 2. Ferroelectric domains in PbZr»5Tip7503 (PZT). In a conventional bright field image, the domains show up as bands of slightly
varying intensity separated by domain walls of high contrast. At higher magnification one recognizes the rotation of the lattice planes

by the small angle 6 = Arctan[c/a].

dipole density

P= Z p/vol

averaged over all dipoles in a considered volume
vol. Correspondingly, BaTiOs3, with saturation
polarisation of |13| =0.26 C/m? and lattice con-
stant of about 0.4 nm, can be attributed to a dipole
moment of |p] = 0.1e nm in each unit cell. As an
atomistic quantity, the dipole moment p allows
derivation and understanding of the ferroelectric
properties. However, since it is a local quantity, it
only makes sense for description on an atomic
scale. In contrast, polarisation is a more general
quantity in that it gives the average over a selected
volume. This volume may be a unit cell or a largely
extended domain of equally oriented dipoles giving
the saturation polarisation. Selecting a larger
volume containing many differently oriented
domains, possibly results in zero polarisation.
Consequently, the polarisation is the parameter
of choice to describe ferroelectric structure on all
length scales.

3. Wave optical modelling of the electron
interaction

First, a simple model was set-up to study the
specific effects on the electron wave produced by a

single electric dipole. Further, the interaction of
the electron wave with “‘crystals” formed by
electron dipoles was computed in kinematic
approximation [11] to learn about the phase
shifting effects peculiar to ferroelectrics. In a
future step, this model has to be improved to
combine the ferroelectric structure with the crys-
tallographic one, and the calculation of interaction
has to be performed fully dynamically.

3.1. Object exit wave of a single dipole

In kinematic approximation, the phase modula-
tion of a wave propagating in z-direction is
computed by means of

o(x,y) = GVproj(an)
with the interaction constant

e .
o =2n— (v electron velocity),

hv

where the projected potential is given by

+o
Vproj(x’ y) = / Vdip(x, Vs Z) dz.
-0

Vaip(x,»,z) means the potential distribution
around an dipole. Evidently, a dipole oriented
along z-direction yields a projected potential of
Vioroj(x,¥) = 0. This was the basic argument by
Spence et al. in Ref. [8], saying that components
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perpendicular to the (x, y)-plane do not contribute
a phase shift. For a single dipole in the (x, y)-plane,
centred about the origin, consisting of two
elementary charges +e arranged at a mutual
distance d in y-direction,

(x+d/2) + ()
(x—d/2)" + ()

e
Vproj(xa J’) = 4718() LOg

results.

Expectedly, as shown in Fig. 3, the resulting
phase shift @gi,oe(x,») is strictly symmetrical
about the x-axis, and asymmetrical about the
y-axis. Therefore, the electron diffraction pattern
given by the Fourier spectrum

SpeCaipod) = / expligaor (] expli2ngr] dF,

with 7 = (x,y) and spatial frequency vector ¢ =
(gx,qy), is also symmetrical about g., and asym-
metrical about ¢, (Fig. 4).

3.2. Object exit wave of a dipole crystal

The exact modelling of potential distribution in
crystals needs considerable care, as shown by
O’Keefe and Spence in Ref. [12]. In the following,
however, by means of a very simple model
consisting only of point charges, we want to
present a rough idea about typical effects expect-
able from a ferroelectric crystal.

A 2D dipole crystal is built up by convolution of
a point lattice
point lattice = Z O(x — mxgip)o(y — nydip)

m,n
with a dipole (Fig. 5). Correspondingly, the phase
modulation of the electron wave running through
such a dipole crystal can be computed as

e
P(x,) =% dnen Z Log
(x — mxaip +d/2)* + (v — nyaip)’
(x — mxaip — d/2)* + (v — nyaip)’

This phase distribution is shown in Fig. 6: in each
unit cell it exhibits two pronounced peaks, one
positive and one negative, at the positions of the
two respective charges. Additionally, it reveals a
mesoscopic tilt of the whole wave within the

crystal; this arises because the phases of each
dipole reach far outside their unit cell, since in
x-direction they decay somewhat slower than 1/x.
Therefore, the contributions stemming from all
dipoles sum up in each point (x, y). Consequently,
the phase of the object exit wave may be described
by the sum

(p(x,y) = q)nano(x’y) + (pmeso(x’y)

of a nanoscopic phase shift ¢,,,,(x,y) describing
the pure effect in the unit cells, and a mesoscopic
phase shift ¢, (x,») describing only the effect
over the extended crystal (Fig. 7). @pe60(X, ) may
be regarded as the result of the polarisation of the
whole crystal.

For description of the individual dipoles ar-
ranged periodically in a crystal, it has been shown
in Ref. [12] that a unit cell can be found for which
the total dipole moment in the unit cell is zero.
Then the entire effect of polarisation can be
attributed to surface termination effects of the
thin slab, and to point and planar defects, such as
domain boundaries. Termination effects arise if
the thickness of the slab is not an integral number
of unit cells, or if the surfaces contain atomic steps.
To minimise total energy, it might be expected that
these defects will arise in such a way that the total
charge on the slab is zero. Surface steps, and the
fringing field from planar defects [13], will then
produce the dominant features in the electron
hologram, given above by ¢,,..,(x, »), if the atomic
structure is not resolved.

3.3. Diffraction at a 2D crystal of dipoles

From the convolution theorem of Fourier
transforms one finds that the diffraction pattern
of a dipole crystal is given by

Specdipcryst((i) = FT[point lattice] Specdipole(zj)-

This shows that the reflections from the point
lattice are modulated according to the Fourier
spectrum of the dipole. Since specgipoe 1 not
symmetrical in ¢,, Friedel’s rule is intrinsically
violated in the direction of the dipoles; addition-
ally, the whole spectrum is shifted aside, mainly in

gy-direction, by grad[p,,..,(x,»)]/(2n) (Fig. 8).
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Fig. 3. Phase shift @giyoic(x, ) of an electron wave by an electric dipole assuming a negative charge on the left and a positive one on the
right. The assumed dipole strength is [p| = 0.1e nm, as attributable to a unit cell of BaTiOs.

With these results, one can in principle already
understand some of the findings observed by
conventional TEM. For instance, differently or-
iented domains in the area selected for diffraction
give rise to reflection splitting due to the different
shifts of the according spectra. Because of the

violation of Friedel’s rule, the sub-reflections of a
split pair are differently excited, consequently the
two domains—even if they differ only by inver-
sion—appear at different intensities in a dark field
image. Contrast oscillations occur inside domains
with increasing thickness. These and other
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Fig. 5. Scheme of a crystal made up by dipoles.
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Fig. 6. Phase shift of a dipole crystal corresponding to a monolayer of BaTiOj;. In addition to the expected nanoscopic phase shift
from each dipole, the linescan shows a mesoscopic phase wedge over the whole crystal. Simulated image with 256 x 256 pixels; 8 pixels

correspond to one unit cell of 0.4 nm.

consequences derived from the simple model are
discussed in more detail in Ref. [11].

4. Holography of ferroelectrics

4.1. Expectations

The main drawback of conventional TEM is
that the rather complicated phase structure of

<

ferroelectrics cannot be imaged directly by bright
field imaging because of the poor transfer proper-
ties for large-area phase distributions. Instead it
has to be derived from subtleties of the diffraction
pattern, and from the very hard-to-understand
dark field images. As shown in Ref. [11], dark field
images reveal a strong contrast between domains;
however, it depends on the selected reflection and
on specimen thickness whether the contrast is
black/white or white/dark or whether there is a

<%

Fig. 4. Electron diffraction pattern of the object exit wave exp[ipgipor] Of a dipole. With increasing strength, an asymmetry in dipole
direction clearly shows up. Strength corresponds to 20 monolayers (top) and 200 monolayers (bottom) of BaTiOs.
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Fig. 7. Decomposition of the crystal phase into two phase
components. Whereas ¢,,,, can only be measured at atomic
resolution, ¢, allows quantitative determination of the
polarisation of the domains at medium resolution. Contrary
t0 Ppano> Pmeso does not depend on charge and separation of
the dipole charges, as long as the dipole moment is kept
constant.

contrast at all. Possibly, electron holography
offers a solution because of the unique facilities
for reconstruction and quantitative analysis of the
nearly ideally transferred phase images; the holo-
graphic method is discussed in detail e.g. in Ref.
[14]; a complete theoretical description by Hawkes
and Kasper is found in Ref. [15].

We started our holographic investigation at
medium resolution. Then, the recorded wave is
averaged over the atomic unit cells. Consequently,
only the mesoscopic phase distribution @, (X, )
remains, which represents the coarse polarisation
structure of domains. In terms of polarisation, the
phase can be understood as follows:

Starting with the general relation

o(x,)) = o / Vix,p.2)dz,

Qy
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Fig. 8. Electron diffraction patterns at a dipole crystal. By the
polarisation, Friedel’s law is violated because of the asymmetric
Fourier spectrum of a dipole (Fig. 4), and the whole spectrum is
shifted aside due to the phase gradient found in @ (x,»).
Assumed dipole strength corresponds to 0 (top) and 200
monolayers (bottom) of BaTiO;. Note that the shape of the
reflections is given by the Fourier transform of the mesoscopic
phase distribution.

the mesoscopic phase of the transmitted electron
wave can be computed directly from the electric
field F = —P /e induced by the polarisation P in a
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material with dielectric constant ¢, as

Prmeso (X, ) = 0/ |:/ ~E d7:| dz
thickness LJ plane

:9//ﬁdzd7.
&

The integral over z can be interpreted as “‘pro-
jected polarisation™

P proj — / Pdz.
thickness

The phase distribution is given absolutely, if the
line integral connects the considered point (x,y)
with a point in vacuum

c [
(pmeso(xay) = - / Ppl'Oj d?a

& vac
i.e. if, as usual in holography, the reference wave
runs through vacuum. For a simple polarisation
structure, the situation is sketched in Fig. 9. One
immediately sees that the projected polarisation
Pproj(x,y) can be determined from the phase
gradient by means of

— &
Pproj(x,y) = pu grad[@yeso (X, ¥)]-

It is interesting to note that, from the slope of
Pmeso (X, 1), also the deflection of an electron
trajectory in the particle image may be computed

T

t

1

‘ )( 1 0l
v ¥

Fig. 9. Scheme of phase shift by ferroelectric polarisation. The
phase of an incident plane wave is modulated only by the in-
plane component of the projected polarisation such that the
phase increases in the direction of polarisation.
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by means of

IO
y(x, y) - ﬂ grad[¢meso(xa y)],

which is the wave optical counterpart to the
expression given by Fuchs and Liesk in Ref. [3];
k = 1/7 is the wave number of the beam electrons.

4.2. Experimental results

Using our Philips CM200FEG-ST/Lorentz elec-
tron microscope with ¢ = 0.0073/V nm, we ob-
tained holograms with the Lorentz-lens as
objective lens, which allows covering a field of
view of about 800 x 800 nm?. Then a lateral
resolution of about 3.5 nm can be achieved at
best, meaning that only the coarse polarisation
structure shows up in the reconstructed phase
image.

At the beginning, the main question was
whether ferroelectric phases are sufficiently strong
to be detected at all well above noise from a
hologram. Assuming an object thickness of ¢ =
50 nm, for BaTiO; (|P| = 0.26 C/m?, ¢~ 1700) a
phase gradient of the order of 27/1000 rad/nm
can be expected. Consequently, over the field of
view, sufficiently detectible phase differences of the
order of n should show up. In fact, in the phase
images reconstructed from holograms, we found
significant phase modulations over domains in this
order of magnitude (Fig. 10).

For interpretation of the phase images in terms
of polarisation, one has to analyse the phase
gradients. A surface plot of the phase image helps
with visual inspection of the phase gradients, i.e. a
first visualisation of the projected “‘in-plane”
polarisation distribution. In Fig. 11, the intuitively
arranged arrows give a first rough idea about
the polarisation in the apparent domains. For a
more accurate evaluation, the gradient of the
phase image is determined in more detail and
displayed as an arrow plot by means of the
Mathematica programme package [16]. The arrows
indicate both magnitude and orientation of the
polarisation (Fig. 12). Phase unwrapping is a
prerequisite for this procedure. Due to phase
noise, arrows do also show up in non-polarised
areas; however, they are oriented randomly.
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Fig. 10. Phase image of domains in BaTiOs. Strong large-area phase contrast reveals the domains. According to the linescans, the dark
areas represent an even phase value hence no projected in-plane polarisation; in contrast, the bright areas show a clear increase and
decrease of the phase distribution indicating a projected head-to-head polarisation component in the (x,y)-plane. Note that the
observed phase shifts are in the order of 7.

Fig. 11. Surface plot of the phase image of Fig. 10. The 3D display of the phase distribution gives a suggestive impression of the
projected polarisation intuitively indicated by the arrows.

In any case, in these phase images, only the give rise to a wrong interpretation. For instance,
polarisation components in the plane perpendicu- the dark areas of Fig.12 do not show a
lar to the electron beam are detected. This may preferential arrow direction hence no polarisation.
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Fig. 12. Arrow plot of the phase image of Fig. 10. The arrows represent the gradient of the phase distribution, hence they are
proportional to the in-plane component of the projected polarisation. They allow a more detailed analysis of the distribution of the
polarisation, as seen in the enlarged area. Determination of gradient image and display as arrow plot are performed by means of

Mathematica software.

Presumably, there is a pure polarisation compo-
nent parallel to the beam, i.e. a pure “perpendi-
cular-to-plane” component that does not affect
the phase. Likewise, the in-plane component
visible in the bright areas can only be interpreted
as the projection of the possibly oblique polarisa-
tion into the plane perpendicular to the electron
beam.

Interestingly, the arrows often indicate a smooth
built-up of the polarisation and a steady rotation
of the polarisation across the domain boundaries
as seen in Fig. 12. However, faced with the
essential question whether polarisation changes
across a boundary in an atomically sharp step or
in a slow continuous rotation, these first findings
should not yet be overstressed. By convolution
with the point spread function of the Lorentz-lens,
an atomically sharp step may also be rounded off.
Furthermore, the projection along z of domains
with differently oriented polarisation may produce
the same effect.

Therefore, the question arises how one can
determine the complete 3D polarisation distri-
bution. For a complete analysis of the 3D
polarisation with obliquely oriented domains as

sketched in Fig. 13, we have to solve three
problems:

i. The projected polarisation is not unique if
polarisation direction varies due to oblique
domain boundaries along projection direction z.

ii. Only the in-plane component of the projected
polarisation gives rise to a phase shift.

iii. Additionally, the ferroelectric phase shift has
to be distinguished from other phase shifting
effects such as variations of inner potentials or
thickness, surface charges, charges at inter-
faces and leakage fields, which also give rise to
a phase shift.

The first problem can be solved by using objects
considerably thinner than the average domain size.
However, the projected polarisation, and hence the
phase shift, decreases with decreasing thickness ¢,
leading to noise problems at very thin objects. In
any case, then the prOJected polarisation can
simply be written as P = Pr.

The second problem can be overcome by taking
holograms at different object tilt (Fig. 14). By tilt,
however, not only the polarisation components
projected into the inplane change, but also the
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Fig. 13. Schematic cross-section through a ferroelectric object. The polarisation projected along the z-axis is a mixture of different
orientations unless the thickness is considerably thinner than the extension of domains.

T

ﬁ |=(l3> ﬁ tO
4
| )(_ R 2(s

=T
ty
N

Fig. 14. Effect of object tilt on recorded phase modulation. By tilt, in-plane components and the projected thickness change, hence the
projected polarisation changes. Note that the wave front is not simply tilted but changes its appearance.

projected thickness of the object. Furthermore,
domain boundaries are tilted giving rise to partial
overlap in projection. By taking account of
dynamical interaction, the problem would be
even more complicated. In the most simple
case, i.e. at a single domain with polarisation
oriented at an angle « related to the object foil, the
“projected in-plane polarisation” in the bulk is
governed by

. = cos(x+9)
(POin-ptane = (F1) cos(9)

with the tilt angle 9 of the object normal related to
the z-direction (Fig. 15). Interestingly, in-plane
polarisation with « =0 does not change by the

tilt operation. Considerable changes are found in
the same areas of the tilted object (Fig. 16). These
effects have to be analysed carefully, because
taking holograms at different tilt angle 3 may
allow elaborating magnitude and orientation of
the 3D polarisation distribution by some tomo-
graphic technique.

Taking holograms under in situ experiments
with the object can solve the third problem. One
way is to heat the object below and above Curie
temperature. The difference of the phase images
uniquely represents the ferroelectric structure;
these experiments are being performed. The same
can be expected from in situ field-switching of the
domains.
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Fig. 15. Influence of object tilt § on projected polarisation.
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Fig. 16. Change of projected polarisation under object tilt 3.
The tilt of about 5° leads to considerable changes in the
projected polarisation as discernible from the arrows. Object:
BaTiO3,

5. Conclusions

Ferroelectric structures produce complicated
phase modulations of the transmitted electron
wave, which may be understood by means of a
presented simple model. The mesoscopic ferro-
electric phase modulation is detected and evalu-
ated by means of electron holography. This is very

advantageous, because the large-area domain
structures can be recorded without the usual
restrictions in TEM stemming from the transfer
function of the electron microscope. Furthermore,
the holographic phase images can quantitatively
be evaluated in terms of the ferroelectric polarisa-
tion by means of the phase gradient image; this is
expected to be the main advantage over visualisa-
tion of domains by means of dark field imaging.
The recorded polarisation is very sensitive
to object tilt because the respective in-plane
components may change considerably. Based on
these first findings, holographic tomography has to
be developed for a full 3D determination of the
ferroelectric structure.

Furthermore, the interesting question arises
whether one would obtain similar findings also
with acentric polar crystals. Since the typical
ferroelectric phenomena are based on ionic bond-
ing, we would expect them, if, instead of a pure
covalent bonding, a certain degree of ionicity is
involved. This has to be examined experimentally.
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